#

Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов

0.00
0 Оценок
0
Отзывов

О книге

Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей. Описаны простые активационные функции с единственным нейроном (ReLu, сигмоида и Swish), линейная и логистическая регрессии, библиотека TensorFlow, выбор стоимостной функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами. Показана отладка и оптимизация расширенных методов отсева и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных. Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов данных. По каждому техническому решению даны примеры решения практических задач.

Жанры и теги
Серия
Лучшая цена:
1218 ₽
Наличие в магазинах #
Купить на Лабиринт
1218 ₽
Характеристики
Издательство:
BHV
Год издания:
2020-01-01
ISBN:
978-5-9775-4118-3

Отзывы

0

Чтобы оставить отзыв или проголосовать, необходимо авторизоваться
Войти
или
Номер телефона Другие способы
При входе на ресурс вы принимаете публичную оферту и обработку персональных данных
Другие способы
Через приложение Books.Fan
При входе на ресурс вы принимаете публичную оферту и обработку персональных данных
Введите номер телефона
Введите код
Мы отправили вам письмо с кодом на
+78786546545
Введите его для подтверждения номера телефона
Не приходит код?