#

Машинное обучение для алгоритмической торговли на финансовых рынках. Практикум

0.00
0 Оценок
0
Отзывов

О книге

Книга посвящена практике применения машинного обучения с целью создания мощных алгоритмических стратегий для успешной торговли на финансовых рынках. Изложены базовые принципы работы с данными: оценивание наборов данных, доступ к данным через API на языке Python, доступ к финансовым данным на платформе Quandl и управление ошибками предсказания. Рассмотрены построение и тренировка алгоритмических моделей с помощью Python-библиотек pandas, Seaborn, StatsModels и sklearn и построение, оценка и интерпретация моделей AR(p), MA(q) и ARIMA(p, d, q) с использованием библиотеки StatsModels. Описано применение библиотеки PyMC3 для байесового машинного обучения, библиотек NLTK, sklearn (Scikit-learn) и spaCy для назначения отметок финансовым новостям и классифицирования документов, библиотеки Keras для создания, настройки и оценки нейронных сетей прямого распространения, рекуррентных и сверточных сетей. Показано, как применять трансферное обучение к данным спутниковых снимков для предсказания экономической активности и как эффективно использовать подкрепляемое обучение для достижения оптимальных результатов торговли.

Лучшая цена:
2087 ₽
Наличие в магазинах #
Купить на Лабиринт
2087 ₽
Характеристики
Издательство:
BHV
Год издания:
2020-01-01
ISBN:
978-5-9775-6595-0

Отзывы

0
Все отзывы

Чтобы оставить отзыв или проголосовать, необходимо авторизоваться
Войти
или
Номер телефона Другие способы
При входе на ресурс вы принимаете публичную оферту и обработку персональных данных
Другие способы
Через приложение Books.Fan
При входе на ресурс вы принимаете публичную оферту и обработку персональных данных
Введите номер телефона
Введите код
Мы отправили вам письмо с кодом на
+78786546545
Введите его для подтверждения номера телефона
Не приходит код?